Foliation

In mathematics (differential geometry), a foliation is an equivalence relation on an n-manifold, the equivalence classes being connected, injectively immersed submanifolds, all of the same dimension p, modeled on the decomposition of the real coordinate space Rn into the cosets x + Rp of the standardly embedded subspace Rp. The equivalence classes are called the leaves of the foliation.[1] If the manifold and/or the submanifolds are required to have a piecewise-lineardifferentiable (of class Cr), or analytic structure then one defines piecewise-linear, differentiable, or analytic foliations, respectively. In the most important case of differentiable foliation of class Cr it is usually understood that r ≥ 1 (otherwise, C0 is a topological foliation).[2] The number p (the dimension of the leaves) is called the dimension of the foliation and q = n − p is called its codimension.

2-dimensional section of Reeb foliation
3-dimensional model of Reeb foliation

In some papers on general relativity by mathematical physicists, the term foliation (or slicing) is used to describe a situation where the relevant Lorentz manifold (a (p+1)-dimensional spacetime) has been decomposed into hypersurfaces of dimension p, specified as the level sets of a real-valued smooth function (scalar field) whose gradient is everywhere non-zero; this smooth function is moreover usually assumed to be a time function, meaning that its gradient is everywhere time-like, so that its level-sets are all space-like hypersurfaces. In deference to standard mathematical terminology, these hypersurface are often called the leaves (or sometimes slices) of the foliation.[3] Note that while this situation does constitute a codimension-1 foliation in the standard mathematical sense, examples of this type are actually globally trivial; while the leaves of a (mathematical) codimension-1 foliation are always locally the level sets of a function, they generally cannot be expressed this way globally,[4][5] as a leaf may pass through a local-trivializing chart infinitely many times, and the holonomy around a leaf may also obstruct the existence of a globally-consistent defining functions for the leaves. For example, while the 3-sphere has a famous codimension-1 foliation discovered by Reeb, a codimension-1 foliation of a closed manifold cannot be the given by the level sets of a smooth function, since a smooth function on a closed manifold necessarily has critical points at its maxima and minima.

Foliated charts and atlasesEdit

In order to give a more precise definition of foliation, it is necessary to define some auxiliary elements.

A 3-dimensional foliated chart with n = 3 and q = 1. The plaques are 2-dimensional and the transversals are 1-dimensional.

rectangular neighborhood in Rn is an open subset of the form B = J1 × ⋅⋅⋅ × Jn, where Ji is a (possibly unbounded) relatively open interval in the ith coordinate axis. If J1 is of the form (a,0], it is said that B has boundary [6]

{\displaystyle \partial B=\left\{\left(0,x^{2},\ldots ,x^{n}\right)\in B\right\}.}

In the following definition, coordinate charts are considered that have values in Rp × Rq, allowing the possibility of manifolds with boundary and (convex) corners.

foliated chart on the n-manifold M of codimension q is a pair (U,φ), where U ⊆ M is open and {\displaystyle \varphi :U\to B_{\tau }\times B_{\pitchfork }} is a diffeomorphism{\displaystyle B_{\pitchfork }} being a rectangular neighborhood in Rq and {\displaystyle B_{\tau }} a rectangular neighborhood in Rp. The set Py = φ−1(Bτ × {y}), where {\displaystyle y\in B_{\pitchfork }}, is called a plaque of this foliated chart. For each x ∈ Bτ, the set Sx = φ−1({x} × {\displaystyle B_{\pitchfork }}) is called a transversal of the foliated chart. The set τU = φ−1(Bτ × ({\displaystyle B_{\pitchfork }})) is called the tangential boundary of U and {\displaystyle \partial _{\pitchfork }U} = φ−1((∂Bτ) × {\displaystyle B_{\pitchfork }}) is called the transverse boundary of U.[7]

The foliated chart is the basic model for all foliations, the plaques being the leaves. The notation Bτ is read as "B-tangential" and {\displaystyle B_{\pitchfork }} as "B-transverse". There are also various possibilities. If both {\displaystyle B_{\pitchfork }} and Bτ have empty boundary, the foliated chart models codimension-q foliations of n-manifolds without boundary. If one, but not both of these rectangular neighborhoods has boundary, the foliated chart models the various possibilities for foliations of n-manifolds with boundary and without corners. Specifically, if {\displaystyle B_{\pitchfork }} ≠ ∅ = ∂Bτ, then ∂U = τU is a union of plaques and the foliation by plaques is tangent to the boundary. If ∂Bτ ≠ ∅ = {\displaystyle B_{\pitchfork }}, then ∂U = {\displaystyle \partial _{\pitchfork }U} is a union of transversals and the foliation is transverse to the boundary. Finally, if {\displaystyle B_{\pitchfork }} ≠ ∅ ≠ ∂Bτ, this is a model of a foliated manifold with a corner separating the tangential boundary from the transverse boundary.[7]

(a) Foliation tangent to the boundary {\displaystyle B_{\pitchfork }} ≠ ∅ = ∂Bτ; (b) Foliation transverse to the boundary ∂Bτ ≠ ∅ = {\displaystyle B_{\pitchfork }}; (c) Foliation with a corner separating the tangential boundary from the transverse boundary {\displaystyle B_{\pitchfork }} ≠ ∅ ≠ ∂Bτ.

foliated atlas of codimension q and class Cr (0 ≤ r ≤ ∞) on the n-manifold M is a Cr-atlas {\displaystyle {\mathcal {U}}=\{(U_{\alpha },\varphi _{\alpha })\mid \alpha \in A\}} of foliated charts of codimension q which are coherently foliated in the sense that, whenever P and Q are plaques in distinct charts of {\mathcal {U}}, then P ∩ Q is open both in P and Q.[8]

A useful way to reformulate the notion of coherently foliated charts is to write for w ∈ Uα ∩ Uβ [9]

{\displaystyle \varphi _{\alpha }(w)=\left(x_{\alpha }(w),y_{\alpha }(w)\right)\in B_{\tau }^{\alpha }\times B_{\pitchfork }^{\alpha },}
{\displaystyle \varphi _{\beta }(w)=\left(x_{\beta }(w),y_{\beta }(w)\right)\in B_{\tau }^{\beta }\times B_{\pitchfork }^{\beta }.}

The notation (Uα,φα) is often written (Uα,xα,yα), with [9]

{\displaystyle x_{\alpha }=\left(x_{\alpha }^{1},\dots ,x_{\alpha }^{p}\right),}
{\displaystyle y_{\alpha }=\left(y_{\alpha }^{1},\dots ,y_{\alpha }^{q}\right).}

On φβ(Uα ∩ Uβ) the coordinates formula can be changed as [9]

{\displaystyle g_{\alpha \beta }\left(x_{\beta },y_{\beta }\right)=\varphi _{\alpha }\circ \varphi _{\beta }^{-1}\left(x_{\beta },y_{\beta }\right)=\left(x_{\alpha }\left(x_{\beta },y_{\beta }\right),y_{\alpha }\left(x_{\beta },y_{\beta }\right)\right).}
Plaques of Uα each meet two plaques of Uβ.

The condition that (Uα,xα,yα) and (Uβ,xβ,yβ) be coherently foliated means that, if P ⊂ Uα is a plaque, the connected components of P ∩ Uβ lie in (possibly distinct) plaques of Uβ. Equivalently, since the plaques of Uα and Uβ are level sets of the transverse coordinates yα and yβ, respectively, each point z ∈ Uα ∩ Uβ has a neighborhood in which the formula

{\displaystyle y_{\alpha }=y_{\alpha }(x_{\beta },y_{\beta })=y_{\alpha }(y_{\beta })}

is independent of xβ.[9]

The main use of foliated atlases is to link their overlapping plaques to form the leaves of a foliation. For this and other purposes, the general definition of foliated atlas above is a bit clumsy. One problem is that a plaque of (Uα,φα) can meet multiple plaques of (Uβ,φβ). It can even happen that a plaque of one chart meets infinitely many plaques of another chart. However, no generality is lost in assuming the situation to be much more regular as shown below.

Two foliated atlases {\mathcal {U}} and {\mathcal {V}} on M of the same codimension and smoothness class Cr are coherent {\displaystyle \left({\mathcal {U}}\thickapprox {\mathcal {V}}\right)} if {\displaystyle {\mathcal {U}}\cup {\mathcal {V}}} is a foliated Cr-atlas. Coherence of foliated atlases is an equivalence relation.[9]

Sample charts in a regular foliated atlas.

Plaques and transversals defined above on open sets are also open. But one can speak also of closed plaques and transversals. Namely, if (U,φ) and (W,ψ) are foliated charts such that {\overline {U}} (the closure of U) is a subset of W and φ = ψ|U then, if {\displaystyle \varphi (U)=B_{\tau }\times B_{\pitchfork },} it can be seen that {\displaystyle \psi |{\overline {U}}}, written {\displaystyle {\overline {\varphi }}}, carries {\overline {U}} diffeomorphically onto {\displaystyle {\overline {B}}_{\tau }\times {\overline {B}}_{\pitchfork }.}

A foliated atlas is said to be regular if

  1. for each α ∈ A{\displaystyle {\overline {U}}_{\alpha }} is a compact subset of a foliated chart (Wα,ψα) and φα = ψα|Uα;
  2. the cover {Uα | α ∈ A} is locally finite;
  3. if (Uα,φα) and (Uβ,φβ) are elements of the foliated atlas, then the interior of each closed plaque P ⊂ {\displaystyle {\overline {U}}_{\alpha }} meets at most one plaque in {\displaystyle {\overline {U}}_{\beta }.} [11]

By property (1), the coordinates xα and yα extend to coordinates {\displaystyle {\overline {x}}_{\alpha }} and {\displaystyle {\overline {y}}_{\alpha }} on {\displaystyle {\overline {U}}_{\alpha }} and one writes {\displaystyle {\overline {\varphi }}_{\alpha }=\left({\overline {x}}_{\alpha },{\overline {y}}_{\alpha }\right).} Property (3) is equivalent to requiring that, if Uα ∩ Uβ ≠ ∅, the transverse coordinate changes {\displaystyle {\overline {y}}_{\alpha }={\overline {y}}_{\alpha }\left({\overline {x}}_{\beta },{\overline {y}}_{\beta }\right)} be independent of {\displaystyle {\overline {x}}_{\beta }.} That is

{\displaystyle {\overline {g}}_{\alpha \beta }={\overline {\varphi }}_{\alpha }\circ {\overline {\varphi }}_{\beta }^{-1}:{\overline {\varphi }}_{\beta }\left({\overline {U}}_{\alpha }\cap {\overline {U}}_{\beta }\right)\rightarrow {\overline {\varphi }}_{\alpha }\left({\overline {U}}_{\alpha }\cap {\overline {U}}_{\beta }\right)}

has the formula [11]

{\displaystyle {\overline {g}}_{\alpha \beta }\left({\overline {x}}_{\beta },{\overline {y}}_{\beta }\right)=\left({\overline {x}}_{\alpha }\left({\overline {x}}_{\beta },{\overline {y}}_{\beta }\right),{\overline {y}}_{\alpha }\left({\overline {y}}_{\beta }\right)\right).}

Similar assertions hold also for open charts (without the overlines). The transverse coordinate map yα can be viewed as a submersion

{\displaystyle y_{\alpha }:U_{\alpha }\rightarrow \mathbb {R} ^{q}}

and the formulas yα = yα(yβ) can be viewed as diffeomorphisms

{\displaystyle \gamma _{\alpha \beta }:y_{\beta }\left(U_{\alpha }\cap U_{\beta }\right)\rightarrow y_{\alpha }\left(U_{\alpha }\cap U_{\beta }\right).}

These satisfy the cocycle conditions. That is, on yδ(Uα ∩ Uβ ∩ Uδ),

{\displaystyle \gamma _{\alpha \delta }=\gamma _{\alpha \beta }\circ \gamma _{\beta \delta }}

and, in particular,[12]

{\displaystyle \gamma _{\alpha \alpha }\equiv y_{\alpha }\left(U_{\alpha }\right),}
{\displaystyle \gamma _{\alpha \beta }=\gamma _{\beta \alpha }^{-1}.}

Using the above definitions for coherence and regularity it can be proven that every foliated atlas has a coherent refinement that is regular.[13]

Foliation definitionsEdit

Several alternative definitions of foliation exist depending on the way through which the foliation is achieved. The most common way to achieve a foliation is through decomposition reaching to the following

Decomposition through the coordinates function x : URn.

Definition. A p-dimensional, class Cr foliation of an n-dimensional manifold M is a decomposition of M into a union of disjoint connected submanifolds {Lα}α∈A, called the leaves of the foliation, with the following property: Every point in M has a neighborhood U and a system of local, class Cr coordinates x=(x1, ⋅⋅⋅, xn) : URn such that for each leaf Lα, the components of U ∩ Lα are described by the equations xp+1=constant, ⋅⋅⋅, xn=constant. A foliation is denoted by {\mathcal {F}}={Lα}α∈A.[5]

The notion of leaves allows for an intuitive way of thinking about a foliation. For a slightly more geometrical definition, p-dimensional foliation {\mathcal {F}} of an n-manifold M may be thought of as simply a collection {Maof pairwise-disjoint, connected, immersed p-dimensional submanifolds (the leaves of the foliation) of M, such that for every point x in M, there is a chart {\displaystyle (U,\varphi )} with U homeomorphic to Rn containing x such that every leaf, Ma, meets U in either the empty set or a countable collection of subspaces whose images under \varphi  in {\displaystyle \varphi (M_{a}\cap U)} are p-dimensional affine subspaces whose first n − p coordinates are constant.

Locally, every foliation is a submersion allowing the following

Definition. Let M and Q be manifolds of dimension n and qn respectively, and let f : MQ be a submersion, that is, suppose that the rank of the function differential (the Jacobian) is q. It follows from the Implicit Function Theorem that ƒ induces a codimension-q foliation on M where the leaves are defined to be the components of f−1(x) for x ∈ Q.[5]

This definition describes a dimension-p foliation {\mathcal {F}} of an n-dimensional manifold M that is a covered by charts Ui together with maps

{\displaystyle \varphi _{i}:U_{i}\to \mathbb {R} ^{n}}

such that for overlapping pairs UiUj the transition functions φij : Rn → Rn defined by

{\displaystyle \varphi _{ij}=\varphi _{j}\varphi _{i}^{-1}}

take the form

\varphi_{ij}(x,y) = (\varphi_{ij}^1(x),\varphi_{ij}^2(x,y))

where x denotes the first q = n − p coordinates, and y denotes the last p co-ordinates. That is,

{\displaystyle {\begin{aligned}\varphi _{ij}^{1}:{}&\mathbb {R} ^{q}\to \mathbb {R} ^{q}\\\varphi _{ij}^{2}:{}&\mathbb {R} ^{n}\to \mathbb {R} ^{p}\end{aligned}}}

The splitting of the transition functions φij into {\displaystyle \varphi _{ij}^{1}(x)} and {\displaystyle \varphi _{ij}^{2}(x,y)} as a part of the submersion is completely analogous to the splitting of {\displaystyle {\overline {g}}_{\alpha \beta }} into {\displaystyle {\overline {y}}_{\alpha }\left({\overline {y}}_{\beta }\right)} and {\displaystyle {\overline {x}}_{\alpha }\left({\overline {x}}_{\beta },{\overline {y}}_{\beta }\right)} as a part of the definition of a regular foliated atlas. This makes possible another definition of foliations in terms of regular foliated atlases. To this end, one has to prove first that every regular foliated atlas of codimension q is associated to a unique foliation {\mathcal {F}} of codimension q.[13]


This article uses material from the Wikipedia article
 Metasyntactic variable, which is released under the 
Creative Commons
Attribution-ShareAlike 3.0 Unported License
.